The Patent Application Part 2 of 3
DETAILED DESCRIPTION
[0021] Briefly, embodiments of the present invention are directed to systems, and associated methods, for amusement park rides with cable-suspended passenger vehicles. In its simplest form, the rides may be thought of as moving a payload through a working environment that is unique because the payload is suspended to provide a variable (selectable) and/or dynamic work space as the suspension assembly/system may be operated to control where the vehicle is positioned in the X-Y positions (e.g., looking downward on the ride) and also its Z or vertical position relative to a track. A conventional tracked ride has a fixed relationship with the track (or a relatively static workspace) while the systems and methods described herein allow the vehicle to be controlled, by ride control systems and/or user input, to explore space below the supporting track or guide rails. Briefly, this is achieved using movable anchor or suspension points for each vehicle in the form of one or more winch or cable drives on one or more carriers or mobile platforms, which are supported by the track(s) and, typically, are independently movable or positionable along the track.
[0022] FIG. 1 illustrates in functional block form an amusement park ride 100 that is adapted to allow vehicles to be moved in three dimensions (X-Y-Z positioning) relative to a supporting carrier that travels along a fixed path (e.g., a path defined by a ride track). The ride 100 includes a vehicle suspension and positioning assembly 110 that functions to support passenger vehicles as shown with vehicle 140, to move the vehicle 140 along a ride path, and to also move the vehicle in the X-Y axes (looking downward on a ride) and Z-axis (vertical positioning relative to the supporting carrier). To this end, the assembly 110 includes one or more tracks 112 that may be nearly any structure that defines a path for the vehicle 140 through a ride 100 such as one, two, or more rails or the like as is common in amusement park rides.
[0023] The assembly 110 also includes one or more carriers 120 that are supported (e.g., rollable) on the track 112. Each carrier 120, in turn, carries or supports one or more winches or cable drives 124 that each provide a suspension or anchor point 126 for a cable with FIG. 1 showing cables 128, 129, 130 extending from each winch 124 such as from a like number of suspension/anchor points 126. During operation of the ride 100, the carrier 120 may be moved at one or more velocities (V.sub.Carrier) on the track 112 to dynamically set the location of the anchor or suspension points 126 (i.e., the anchor points are not fixed for the vehicle 140). Further, each of the winches 124 is independently operable to change the length of the cables 128, 129, 130 at the same or differing uptake/unwind velocities (as shown by L.sub.Cable and V.sub.Cable), which depending upon the number and location of the cables 128, 129, 130 results in the vehicle 140 being moved in the X-Y-Z positions as shown at 141 in FIG. 1. In other words, the vehicle 140 is selectively positionable relative to the track 112 (or ride pathway) to define a variable workspace for the ride 100.
[0024] The passenger vehicle 140 includes support or cable-attachment points 142 of a like number as the number of cables 128, 129, 130, and, typically, the cables 128, 129, 130 are fixed to a structural surface of a body of the vehicle 140 such as with a fixed, pivotal, or swivel connection. The vehicle 140 may also include one or more user input devices 144 that are operable by passengers or riders (not shown) of the vehicle 140 to provide input used to operate the vehicle suspension and positioning assembly 110 so as to modify the position of the vehicle 140 via cables 128, 129, 130 and/or carriers 120. For example, a passenger 144 may operate the device 144 to provide vehicle control signals 148 (wired or wireless data communication signals transmitted to control system 150) to cause the vehicle 140 to be moved along the track 112 at a particular velocity via operation of the carrier 120 or to cause the vehicle 140 to be moved in one or more of the X-Y-Z axes 141 via operation of one or more of the winches 124 (e.g., to provide transverse or vertical movement to avoid a collision or to follow another vehicle, to provide or move the vehicle 140 with pitch, roll, and/or yaw, or to otherwise operate/position the vehicle 140 in a workspace).
[0025] The ride 100 also may include a control system 150 to operate to process the vehicle control signals 148 and to transmit control signals 163 to operate the carriers 120 and/or winches 124 to move the vehicle 140 along the track 112 with a particular body orientation and within a particular (dynamically selected) work space. The control system 150 may include one or more hardware processors 152 that process the vehicle control signals 148 and that process operator input provided via one or more input/output (I/O) devices 154 (e.g., keyboards, mice, touchscreens, touchpads, voice activation devices/software, and the like). The processor 152 may also manage memory 160 of the system 150 that stores one or more ride programs 162 (e.g., software or code devices that cause the system 150 to perform particular functions such as transmitting control signals 163 to selectively operate the carriers 120 and winches 124 to move and position the vehicle 140 along a path defined by the track 112).
[0026] The ride programs 162 may be used to define operation of the user input devices 144 such as to define when a passenger may provide input 148 to alter the positioning/operation of the assembly 110 to position/move the vehicle 140. The ride program 162 (or manual operations by an operator via I/O 154), with or without modification based on input signals 148 from user input devices 144, may define a number of parameters that set the position of the vehicle 140 relative to the track and/or affect motion simulated by the ride 100. For example, the ride parameters 170 may include cable length 172 for each cable 128, 129, 130 by operating the winches/cable drives 124, e.g., to play out more cable or to reel in some length of the cables 128, 129, 130, and the length, L.sub.Cable, is typically independently set by the control system 150 but, in some applications or operating modes, two or more of the cables 128-130 may be kept at a same length (or at some related/proportional length to achieve a desired orientation of the body of the vehicle 140 such as horizontal for loading/unloading, a particular forward or backward slope to simulate a dive or other move of the vehicle, or the like).
[0027] Another parameter 170 is carrier position 120 that is used to adjust the location of the vehicle 140 along the path and/or to define a work space for the vehicle 140. Again, this may involve concurrent or independent movement of each of the carriers 120 to set the location of the suspension/anchor points 126 for suspending the vehicle 140. The winch speed for each winch 124 may be set by parameters 176, which varies the cable velocities, V.sub.Cable, to affect motion of the vehicle 140 (e.g., a rapid and nearly gravity-free fall, a quick or slow roll, or the like). The speed or velocity, V.sub.Carrier, of each carrier 120 along with travel direction on a track 112 may be set by parameters 178, which may be transmitted by controller 150 via control signals 163 to the assembly 110. Further, the vehicle position 179 along the track 112 may be set by parameters 170 of each ride program 162 and this may be used by the processor 152 to send signals 163 to operate the vehicle suspension and positioning assembly 110 (e.g., match a tracked or sensed position with a desired position 179 for a particular show aspect of a ride program and adjust other parameters (such as carrier speed 178) as needed to match sensed and set vehicle position).
[0028] With the system/ride 100 in mind, it can be understood that a common or base set of equipment may be arranged in a number of ways to deliver different ride experiences (or differing ride embodiments). This equipment may include a track that provides a fixed pathway that a carrier travels along. Each ride may have one or more carriers that each provide a mobile platform that travels on or is supported by the track(s). Each carrier may include mechanisms to move the carrier (including power or connections to power) along the track. Each carrier supports a winch system or assembly (including its power and control aspects), and these winches provide a cable management system/assembly capable of changing the length of a cable extending to a support or cable-attachment point/device on a vehicle. Each vehicle is a passenger-carrying structure that is supported by one or more cables extending from a winch on a carrier.
[0029] Regarding system configuration, one or more track structures guide one or more carriers per vehicle along a fixed path (e.g., the tracks themselves are typically fixed in place). The carriers each support one or more winch systems that are each capable of dynamically moving a vehicle through a work space that is selectable in a dynamic manner (based on ride program parameters and/or passenger/rider input) by changing the length of the attached cables. The available workspace (e.g., the space through which the vehicle may be moved during operation of the ride) may be changed by moving the carriers along the track, by moving the carriers in relation to the vehicle while keeping the cable length constant, and by operating the winches to change the lengths of the cables (and these steps may be combined/done concurrently). For example, the carriers may be moved independently (or jointly) along the track(s) and the winches may be independently (or in combination/concurrently) operated to modify the cable lengths (or hold one or more at a fixed length at least for a particular operating period or portion of a ride).
[0030] A unique aspect of the ride 100 (and other embodiments shown/described herein) is that the rides are operable to (or provide the ability to) change the work space or volume of space that the vehicle can move through as the vehicle is moved relative to the track. At any instantaneous moment in time, a volume of space exists that defines the variety of positions that the vehicle can be moved to by changing the lengths of the various cables that connect the vehicle to the carrier or carriers and the winches. This volume ("work space") can be dynamically changed by independently changing the position of the carriers in relation to the vehicle and/or by operating the winches. This may be done for "experiential" reasons in order to create a desired experience and/or for logistical, operational, and/or safety reasons to guarantee the vehicle will not enter specific areas. Work space for a vehicle is defined by the track, the position of the carriers along the track, the positions of the winches on the carriers (suspension/anchor points), and the length of all the cables used to suspend the vehicle (as well as the support/cable-attachment points on the vehicle body).
[0031] The configuration of the vehicle suspension and positioning assembly 110 may be varied widely to practice the ride 100, and, particularly, the number of carriers 120 and winches 124 may be varied (as well as the support points 142 on the vehicles 140) to achieve various cable rigs. For example, a "normal" multipoint suspended cable rig, a "parallelogram" cable rig, or a "Stewart platform" cable rig may be utilized in cases where three or more cables 128-430 are used to suspend the vehicle 140.
[0032] In a normal cable rig, a ride vehicle may be suspended by three or more points from a carrier(s) and moved around the 3D space beneath the carrier (as the carrier is held stationary on a track or moved itself along the path defined by the track) using those suspension points. An issue with a normal rig in this application is its tendency to roll or pitch the payload/vehicle as the vehicle moves away from the geometric center of the rig. The only place where the vehicle would have a level floor (be in a horizontal position such as may be used for loading/unloading) is right at a center position, with greater and greater degrees of roll or pitch as it is moved away from center. For aircraft simulation and other similar motion simulator rides where natural roll would make for a more realistic experience, such non-level orientation of the vehicle may be desirable. However, there are other applications where it is desirable to control the roll and pitch independent of the vehicle position within the work space (which, with a normal rig, may require a gimbal or other mechanism in the assembly 140 to correct for roll or pitch away from a center location of the vehicle)
[0033] The parallelogram-type rig is similar in form to the normal cable rig in that it may use the same number of winches. However, each of these winches may employ (or deploy) two cables that are attached to the vehicle in a parallelogram geometry. In this way, the vehicle may be maintained in a level, horizontal orientation through a larger portion of its range of motion. Such a rigging may be desirable for some implementations of ride 100 in which a vehicle 140 is moved along a track 112 with the vehicle body kept level (or without roll) and through a varying workspace by changing the lengths of cables 128-130.
[0034] The Stewart platform rig employs six winches per vehicle. Stewart platforms are used to provide flight simulators with pistons supporting a platform from below and a similar arrangement may be used (geometrically similar) by suspending a vehicle above using cables rather than supporting the vehicle from below with actuators. This option provides a high degree of flexibility in the motion of the vehicle relate to the carrier(s) and track as it provides a true six-degree-of-freedom setup that provides motion in the X, Y, and Z planes as well as pitch, yaw, and roll. The horizon (or base plane passing through the vehicle body) may be controlled to be in any location in the flight space or work space (e.g., horizontal for loading and unloading and some show portions or at nearly any angle relative to its center/rotation point).
[0035] With the above discussion understood, it will be recognized that the present teaching is not limited to this specific rigging implementation. For example, additional rigging options, e.g., using more than the minimum number of winches necessary to implement the desired vehicle motion, exist and can be used to extend the volume through which the vehicle can be positioned beyond that achievable with the minimum rigging. The description is instead intended to provide several representative and useful rigging arrangements that can be used "as-is" or with some modifications to provide a wide variety of rigging arrangements. Further, the description specifically teaches the following rigging arrangements: multiple carriers with single winches on a single track; multiple carriers with multiple winches on a single track; multiple carriers with single winches on multiple tracks; and multiple carriers with multiple winches on multiple tracks. In many implementations, all cables are terminated at the vehicle above the center of gravity (CG) and at the winch system.
[0036] FIG. 2 illustrates a portion of an amusement park ride 200 that makes use of a Stewart platform-type rig in its vehicle suspension and positioning assembly. As shown, a carrier 210 that is supported upon a track(s) (not shown) is moved at a velocity, along a path defined by the track. On the carrier 210, six winches are supported and selectively control lengths of cables used to suspend a vehicle 230 below the carrier 210. As shown, a pair of winches 212 placed near a forward portion of the carrier 210 is used to provide suspension points for cable 216 that is connected to attachment or support points 236 on the roof or attachment surface 234 of the vehicle body 232.
[0037] The winches 212 are independently operable to define the lengths of the cables 216. Another pair of winches 213 is positioned toward the center of the carrier 210 and feed out and reel in another pair of cables 217 that are connected at opposite ends to support points 236 on attachment surface 234 of body 232. As shown, the attachment or support points 236 are arranged in a triangular arrangement with two of the cables 216, 217 extending from differing pairs of the winches 212, 213 to each point 236 (e.g., similar to two ends of actuator/piston arms provided at each support point on a typical Stewart platform). In one embodiment, it is assumed that six winches 212, 213 are used on each carrier 210 to support/suspend each passenger vehicle 230. Based on a simulator vehicle load of 12,000 pounds, each winch 212, 213 would be sized to apply a tension between 0 and about 7000 lbf to cables 216, 217 as the length of the cable is increased or decreased.
[0038] Conceptually, this type of rig is similar to a normal motion base ride but with differences that make it considerably more exciting and provide a few surprising results. As discussed above, the miler is moved along a track such that the anchor or suspension points are dynamically selectable to significantly increase the volume of work space for the suspended vehicle. In a suspended configuration versus actuator supported platform, the vertical excursion distance for the vehicle relative to the track is only limited by the height (or depth) of the facility as opposed to the length of the actuators. This allows longer, more sustained periods of acceleration and deceleration, which in turn allow for a more interesting ride experience. In a typical ride setting, without one or more winches provided on the underside of the vehicle (as shown in FIG. 2), acceleration in the downward direction cannot exceed 1 G and, practically, may be limited to not exceed 0.6 G to maintain sufficient cable tension. However, if downward acceleration is desired, one or more winches may be added to the ride to provide a connection from below the vehicle (e.g., a winch or winches on a carrier(s) riding on a separate track below the vehicle 230 in the ride 200 of FIG. 2 used to control downward acceleration).
[0039] Regarding ride space, the space limitation for this type of ride is similar to a standard 3D rig along the length of a ride's track (e.g., a space below the track). The space may be kept constant or may be varied along the track length to allow differing motion experiences in differing parts of the ride. The ride is only limited by practical limitations such as how large a ride operator can or wants to make a building and associated machinery. One of the more dramatic aspects for ride passengers may be travel in the vertical (or Z) axis, and, hence, it may be desirable to utilizing longer lengths of suspension cables and provide large amounts of space below a track to allow a failing or sudden drop sensation. Specifically, the more height available for the vehicle to work in along the track the more distance and time is available for downward acceleration events. For example, a 12,000 pound vehicle may be able to experience speeds of up to 3 meters/second with acceleration up to 1 G.
[0040] FIGS. 3 and 4 illustrate one embodiment of a ride 300 using the cable-suspended vehicle ideas discussed above. The ride 300 includes a platform or base 302 from which structural elements 304, 306, such as poles or columns, extend upward to support a single track 310 (but the track 310 could also be suspended in the ride 300). The ride 300 includes a vehicle suspension and positioning assembly 320 that includes first and second carriers 326, 332 that each include a winch/cable drive for reeling in and out first and second cables 327, 323. The cables 327, 323 are fixed at opposite ends to cable mounting element 330 on at support or cable-attachment points 332, 334 (spaced apart, pivotal mounts on element 330, which is located above a center of gravity of the vehicle 340). The mounting element 330 is attached to the upper portion of vehicle body 340 that is adapted for carrying one or more passengers 341 (who may be able to provide input used by a control system to adjust operation of the winches and/or carriers 326, 332 to change the position or orientation of the vehicle 340).
[0041] The ride 300 is adapted to provide two-dimensional motion between two points n a straight or curved track. In other words, the vertical location of the vehicle 340 may be varied during the movement of the carriers 326 332 along the track 310 but there is no transverse movement. By choosing the spacing between the support points 332, 334 the front end of the vehicle 340 may be caused to be lower or higher than the back end of the vehicle (e.g., by having the lengths of cables 323, 327 be non-equal). Moving one of the carriers 326, 332 while keeping the cables 323, 327 the same length can be used to raise or lower the vehicle. Also, operating one or both of the winches on carriers 326, 332 may be used to raise or lower the vehicle 340 by shortening or lengthening, respectively, the lengths of the cables 323, 327.
[0042] Generally, FIG. 3, illustrates a work space 350 that may be provided at load or unload of the vehicle 340 with passengers 341. This smaller workspace may be preferred for vehicle loading or unloading. The work space 350 is relatively small in the direction of the track or ride path but may be as tall or high as allowed by the height or depth provided by the distance between the base 302 and the track 310 (e.g., vertical height or Z-axis dimension of workspace 350 is generally limited by space and limitations of the suspension assembly 320). FIG. 3 shows the work space 350 limited to control vehicle motion for safe loading/unloading of passengers. FIG. 4 shows that the work space 351 may be dynamically changed (here shown enlarged) in size, with the vehicle 340 being positioned throughout the work space 351 by operation of the winches and/or carriers 326, 332 to modify the position/length of the cables 323, 327. For example, the carriers 326, 332 may be moved at differing speeds which would change the vertical position of the vehicle 340 and/or the winches on carriers 326, 332 may be operated to change the vertical distance or to change the orientation of the vehicle 340.
[0043] FIGS. 5 and 6 illustrate another embodiment of a ride 500 that may be used to move a passenger vehicle 540 through a dynamically set work space. In this embodiment, a single track 510 is utilized that is supported a vertical distance or height above a base 502 by, in this case, vertical supports/posts 504. The ride 500 includes three carriers or bogies 522, 524, 526 supporting each vehicle 540 via cables 523, 525, 527. The cables 523, 525, 527 are attached (pivotally affixed) to attachment or support points 543, 544, and 542, respectively, on the top surface of the body of vehicle 540. Each carrier 522, 524, 526 includes a winch or cable drive that is operable to adjust the length of the cables 523, 525, 527. The combination of independent (or concurrent) movement of the carriers 522, 524, 526 on track 510 and independent (or concurrent) operation of the three winches on such carriers to lengthen or shorten the cables 523, 525, 527 allows the work space to be modified such as to move the vehicle from a load/unload position to other positions, as is shown in FIGS. 5 and 6. The work space in these two figures has been modified as the vehicle 540 has been moved through space and the cable suspension system allows the available space to be optimized. For example, the vehicle 540 may simply be hung below the track 510 and follow a circular (in this example) path and/or the entire volume below the track 510 may be used as work space for the ride 500 by movement of carriers and/or operation of winches. In prior rides, the vehicle simply would be support by the carrier and follow the path defined by the track rather than moved through a dynamically selectable work space below the track 510.
[0044] FIG. 7 shows another embodiment of cable-suspended vehicle ride 700. As shown, the ride 700 includes a single track defined by rails 704, 708, and a single carrier 710 is provided per vehicle 730. Each carrier 710 is rotatably coupled via roller/bogie wheel assemblies 712 contacting rails 704, 708 of the track with a lower body or structural frame 714 extending below to face the vehicle 730. On the carrier 710, three winches 720, 724, 726 are positioned in a triangular formation. Suspension cables 721, 725, 727 extend at variable lengths to attachment/support points 736, 738, 739 on a support surface 734 of the body 732 of the vehicle 730. In this example, the attachment points 736, 738, 739 are also arranged in a triangular pattern with two attached to hind or rear portions (e.g., one each on sides or wings of body 732) and one attached to a forward portion (e.g., a nose of the body 732).
[0045] During operation of the ride, the carrier 710 may be positioned along the path defined by the track 704, 708 as shown with movement arrow 716, and this movement may be at a variable or adjustable velocity to provide desired ride effects (e.g., slower during a show portion or a climbing portion and faster during a dive or dropping portion). The winches 720, 724, 726 may be operated separately or together to achieve other ride effects. For example, engine failure of plane/space ship (or otherwise provide a free or rapid fall) may be simulated by concurrently operating the three winches to drop the vehicle 730 by rapidly reeling out cables 721, 725, 727. A dive (or downward pitch) is simulated by lengthening cable 727 with winch 726 and/or shortening cables 721, 725 with winches 720, 724. A climb (or upward pitch) is provided by shortening cable 727 and/or lengthening cables 721, 725, and roll or other motions are provided by shortening or lengthening the cables 721, 725 at different rates and/or different directions. Each vehicle in the ride 700 may be operated similarly by a controller at similar portions of the ride and/or each vehicle may be operated differently in response to user input (or for other reasons), e.g., one passenger may operate their vehicle differently than another causing to explore a variable work space relative to track 704, 708.